
 

Abstract— The prolate spheroidal harmonics are well suited for 
describing the magnetic field of a vessel. In this article we discuss 
several strategies to improve the estimation of the model 
parameters based on measured field data. In particular we give 
an analytic expression for the maximum supported set of 
harmonics for any rectangular grid. This expression allows for 
automatic selection of the appropriate set of harmonics without 
the presently required amount of manual tuning.  In addition, we 
demonstrate that normalization of the harmonics before the 
inversion is essential to get a robust estimate of the parameters. 
 

I. INTRODUCTION 
It is crucial to know the external magnetic field induced by 
marine vehicles in many practical applications [1]. Naval 
vessels and geophysical surveying ships, for example, have 
strict requirements for magnetic silencing. For these ships it is 
an absolute necessity to assess the external fields, since it 
determines the vessels vulnerability to detection and 
recognition.  
 
A model of the source is required in order to evaluate the field 
at any external position, and several candidates have been 
investigated [1], [2]. We adopt the series expansion on prolate 
spheroidal harmonics. This model allows for representing both 
the near field and the far field by obtaining only a limited 
number of parameters.  
 
The process of obtaining the appropriate set of expansion 
coefficients based on measured field data is solving the 
inverse problem. The quality of the estimated expansion 
coefficients is affected by positioning and orientation error. In 
addition to sensor and environmental noise, special care must 
be taken of aliasing problems due to a coarse sampling grid. 
Expanding the harmonics on the best centre point and focal 
distance is also crucial in order to terminate the series 

expansion without introducing a major distortion. 
Furthermore, solving the inverse problem for the prolate 
spheroidal harmonics is sensitive to the set of harmonics 
included with each measurement grid. An ill-conditioned 
stated problem could lead to severe effects from series 
termination, sensor inaccuracies and noise. Some of these 
effects can be reduced following [3].  

 
1 Previously published at the MARELEC 2006 conference on maritime 

electromagnetism, Amsterdam, The Netherlands. Updates apply to sections 
III.B and III.D.2.  

 
This article discusses several strategies to improve the 
inversion. In particular we give an analytic expression for the 
maximum supported set of basis functions for any rectangular 
grid. This expression allows for automatic selection of the 
appropriate set of harmonics without the presently required 
amount of manual tuning. In addition, we demonstrate that 
normalization of the harmonics before inversion is essential to 
get a robust estimate.   
 
Limiting the set of harmonics to those supported by the 
measurement grid, normalizing and utilizing truncated 
singular value decomposition, contributes to a combined 
effect. The resulting series expansion describes the near field 
very accurately and without aliasing. Given sufficient 
information from near field measurements, even the far field 
can be accurately represented. A set of quality measures is 
suggested and used to validate the application of the method 
on real measurements. The findings using real measurement 
are in accordance with those of simulated sources.  
 
The outline of the paper is as follows. Section II discusses the 
general setup and the forward problem. We propose a simple 
relationship between the set of coefficients that should be 
taken into account on one hand and the source length and the 
density of the measurement grid on the other hand in section 
III. Section IV introduces three quality measures that are 
employed to demonstrate this relationship using computer 
simulations. In Section V the results of these simulations are 
presented and discussed. Furthermore, the difference between 
using an exact and an approximate centre point and focal 
distance on the inversion procedure is illustrated.  The gained 
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insight is applied in an inversion procedure on measured 
magnetic field data of a merchant ship in section VI.  Section 
VII gives the conclusions.  

II. PROLATE SPHEROIDAL HARMONIC SERIES EXPANSION 

The prolate spheroidal coordinate system ( ), ,ξ η ϕ  with focal 

length f  is visualized in a Cartesian system ( ), ,x y z  in Fig. 
1. The conversion of coordinates given in [4] is adopted. In 
the following it is assumed, without loss of generality, that the 
prolate spheroidal coordinate system has the major axis along 
the centre-line of the vessel, in x -direction. The -direction 
is pointing to the starboard side and the -direction is 
pointing vertically down.  

y
z

 
 
Solving Maxwell’s equations for a source free region outside 
an isosurface boundary results in a magnetic field given by 

 and the magnetic flux density by H = −∇Φ B Hμ= , where 
μ  is the magnetic permeability of the medium. In the source 
free region, the scalar potential Φ  satisfies Laplace’s 
equation . In a prolate spheroidal coordinate system 2 0∇ Φ =

( ), ,ξ η ϕ  with focal length f , the scalar potential can be 
expanded as 
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where  and Q  are the associated Legendre functionsm

nP m
n

2 of 
the first and second kind, respectively, of n-th degree and m-th 
order. The coefficients  and m

nc m
ns  are the expansion 

coefficients for each degree and order.  
 
The prolate spheroidal harmonics are orthogonal on any 
isosurface ellipsoid, because the trigonometric functions and 
the associated Legendre functions of the first kind are both 
orthogonal. Thus the expansion coefficients can be determined 
from measurements on the ellipsoid alone. Correspondingly, 
measurements on a section of the ellipsoid should be sufficient 
to describe the field beyond this area. This will be elaborated 

further in the following sections. 

 
2 The sign convention of omitting the Condon-Shortley phase is adopted. 

The associated Legendre functions of the second kind are evaluated following 
[5] 

 

III. THE INVERSE PROBLEM  
The expansion coefficients can be estimated by solving the 
inverse problem  
 

=Fa b ,                  (2) 
 
where the vector a contains the unknown expansion 
coefficients to be determined. The vector b contains the 
measured fields and the matrix F contains the fields at the 
measurement points of the harmonics for unit coefficients.  
  

 

Fig. 1. Prolate spheroidal coordinates visualized in a Cartesian coordinate 
system 

Note that in Eq. (1) the coefficients 0
ns  are always multiplied 

by zero and the coefficient  represents the field of a 
magnetic monopole [6], which does not exist. Thus these 
coefficients are excluded from the computations by arranging 
the unknown expansion coefficients as follows 

0
0c

 

 0 1 1 0 1 1 2 2
1 1 1 2 2 2 2 2, , , , , , , ,...

T
c c s c c s c s⎡ ⎤= ⎣ ⎦a . 

 
The magnetic flux density related to each prolate spheroidal 
harmonic at each point of the grid are arranged column-wise 
to construct the matrix  
 

0 1 1 0 1 1 2 2
1 1 1 2 2 2 2 2
, , , , , , , ,...

c c s c c s c s
⎡ ⎤= ⎣ ⎦F f f f f f f f f .  

 
The least square solution to Eq. (2) is given by  
 

†=a F b                   (3) 
 

where  is the pseudoinverse of .  †F F
 
For a practical inversion scheme, only a limited set of 
harmonics can be computed, and the series expansion must be 
truncated. For valid estimation of expansion coefficients, the 
harmonics required to represent the field must be included, 
along with enough samples to discriminate between these 
harmonics. Because the lower degree harmonics decay more 
slowly than those of higher degree, a terminated series 
supports a good representation of the field beyond the 
measurement plane.  
 
A series of considerations apply on selecting measurement 
grid, terminating the series expansion, etc. and are detailed in 
the forthcoming subsections. 
 

A. Sampling criterion  
Usually the measurement area is restricted to below the ship, 
and often the sensor grid is very coarse in the athwart ship 
direction. However, the source field must be sampled at a 



 

sufficiently dense grid to represent the prominent features of 
the field at the measurement depth. If the measurements do 
not appear to be reasonably sampled (over-sampled) in either 
direction on the plane, more measurements must be added in 
order to represent the field with confidence.  
 

B. Supported harmonics 
In this subsection we derive an analytic expression for the 
maximum supported set of basis functions for any rectangular 
grid. This is essential in order to know which prolate 
spheroidal harmonics can be distinguished from 
measurements on a fixed sensor grid.  
 
From Eq. (1), we find that the athwart ship resolution is 
related to the trigonometric function by its argument mϕ , and 
the along ship resolution is mainly related to the associated 
Legendre functions of the first kind with degree  and order 

.  
n

m
 
The trigonometric functions are periodic, and in order to 
discriminate between functions up to periodicity , a 
minimum of  samples of the scalar potential at different 
aspects (to the side of the ship) are required. By using the 
gradient of the scalar potential, as applied for 3-axis magnetic 
measurements, one ambiguity on the phase is avoided and 
only half the number of samples is required. For a 
measurement grid with  3-axis magnetic sensors at 
different athwart ship positions, harmonics of order up to 

 given by Eq. (4) can be distinguished.  

m
2m

yN

maxm
 

max ym N=                  (4) 
 
By inspection we find that the associated Legendre functions 
of the first kind are close to periodic in the along ship 
direction. The scalar potential oscillations over the coordinate 
span of η  correspond to ( )1 mn m δ− + −  periods of the 
trigonometric functions. Here δ  indicates the Kronecker 
delta. The same argumentation applied on the athwart ship 
resolution is now applied for a measurement grid with ,x shipN  

samples taken within the ship length (for each of the  
signatures recorded at different athwart ship positions). We 
obtain that harmonics of degree up to  given by Eq. (5) 
can be distinguished using 3-axis measurements.  

yN

maxn

 
( )max ,x shipn m N m≈ +             (5) 

 
For single axis measurements, ambiguities are introduced on 
the amplitude and phase of the scalar potential. Our 
experience suggests that for single axis measurements, twice 
the number of samples is required as compared with 3-axis 
measurements.  
 

C. Choice of centre point and focal length 
From the spherical harmonics we know that the series 
expansion of an off-centre located point source will introduce 
correctional terms corresponding to all sources of higher 
degree [7]. For the prolate spheroidal harmonics, similar 
relations apply, only that here the centre point, focal length 
and orientation of the main axis must all be considered.  
 
With an unfortunate choice of the centre point or focal length, 
the inversion will depend on a long series of harmonics that is 
not necessarily supported by the grid. (As long as the grid 
supports the field from the source, the grid could be 
interpolated to intervening points, but this would be inaccurate 
for coarse measurement grids.) The best focal length to use is 
not obvious, but half the ship length is often a good initial 
estimate, indicating a source length equal to the length of the 
ship. The main axis is chosen parallel to the centre line of the 
vessel.  
 

D. Normalization of the harmonics & truncation of the SVD 
The pseudoinverse of  in Eq. (3) will be constructed using a 
singular value decomposition (SVD) following the Matlab 
function PINV. In this process, the basis functions are linearly 
combined such that the first new function holds the linear 
combination of the original set with the highest norm, the 
second one holds the linear combination from the remaining 
portion of the basis functions with highest norm etc.  

F

 
Even small errors in the field (originating from noise, 
inaccuracies in the measurement arrangement or an early 
terminated basis set) may totally contaminate the estimated 
coefficients due to the ill-condition of the matrix . 
Truncating the pseudoinverse by only keeping basis functions 
that correspond to significant singular values, will reduce this 
sensitivity at the cost of larger truncation errors [3].  

F

 
1) Normalization of the harmonics 
The basis functions in the matrix F have widely different 
scalings and therefore do not form an orthonormal set. Thus, 
the truncation of SVD of F, may censor out one or several 
important harmonics so that the estimated coefficients are 
totally contaminated. This can only be remedied by scaling the 
harmonics so that their values reflect their relative importance 
compared to each other. Therefore, normalizing to the same 
maximum level on the measurement plane will be a good 
approach. Because an unfortunate choice of grid could lead to 
scaling of values near zero-points, we will instead use the 
energy outside the surface ellipsoid, 0ξ ξ= , given in [8]. The 

basis functions in F are properly normalized with m
nw : 
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where  δ  is the Kronecker delta. We choose the coordinate 
0ξ   such that the ellipsoid is tangent to the measurement grid, 

and find that the difference between the two normalizations is 
minimal.  
 
Using this normalization, the higher degree and order 
harmonics are scaled down by a magnitude of roughly 6 for 

, and up or down by as much as 10 magnitudes for 
higher indexed harmonics. Clearly this will have an influence 
on the result of truncation.  

8n m− =

 
2) Truncation of the SVD 
In order to choose a good threshold, first recall that the 
singular values are the weight of the linearly combined basis 
functions over the measurement grid. After the normalization, 
basis functions with significantly different range dependencies 
are all scaled to the same maximum level. Large singular 
values will therefore be determined by the samples near this 
maximum level. The smallest singular values must represent 
the remaining differences several magnitudes weaker.  
 
For the following argument, assume that the functions were 
not scaled to unity at their largest value, but to the maximum 
measured field strength. Then identify the strongest field 
strength of the noise level and the minimum signature level at 
the border of the measurement grid. A basis function having 
this field strength throughout the measurement grid is not of 
much importance. We therefore choose the norm of this 
function as threshold for truncating the SVD.  
 

IV. MEASURE OF QUALITY 
In order to report the effect of each inversion criterion 
outlined in section III, a measure of quality is required. The 
quality measure is  important in assessing the validity of the 
estimated model as is shown in section V and VI.  
 
We choose to focus on two types of measures; one describing 
the near field, and one describing the far field.  
 

A. Near field quality measure 
For near field quality measure, we look at the relative error of 
the magnetic field at the plane of measurement. The average 
error on the grid points and in between the grid points will be 
used to generate two separate measures. Any difference in the 
two will indicate aliasing problems.  
 
For the simulated sources, it is obvious to compare the field 
from the estimated model with the original source model. For 

measured sources, we do not have the same possibility for 
evaluation between the original measurement points. 
However, for a reasonable dense sampling grid, interpolating 
between the points of measurement can be used as a first order 
approximation that allows for detecting at least severe aliasing 
problems. 
  

B. Far field quality measure 
For far field quality measure we choose the relative error on 
the (far field) magnetic dipole moment. From spherical 
harmonic series expansion we know that the lowest degree 
moment will be unchanged upon a displacement of the centre 
point [7]. For a prolate spheroidal series expansion, the same 
relation applies to the corresponding moment for any change 
of centre point or focal length. No magnetic monopoles exist, 
so the relation applies for the dipole moment.  
 
The magnetic dipole moment [ ], ,Mx My Mz=M  can be 
determined directly from the estimated expansion coefficients 
and the focal length using the relation of [6], to give  
 

2
0 1 1
1 1 1

4 ,2 ,2
3
f c c sπ ⎡ ⎤= ⎣ ⎦M             (7) 

 
where ,  and 0

1c 1
1c 1

1s  are the non-normalized expansion 
coefficients. 
 
Far field measurements can be used to determine the reference 
moment. If not available, the accuracy of the far field 
representation can be indicated by verifying that the dipole 
moment is conserved upon a change of centre point.  
 

V. EVALUATION OF CRITICAL FEATURES 
In this section a simulation study is done to quantify how the 
critical features outlined in section III are affecting the inverse 
problem of estimating the characteristics of a magnetic source 
from a limited number of measurements. In order to relate 
more closely to measuring the magnetic field of an unknown 
ship, we adopt the slightly erroneous centre point and focal 
length of the simulated source in the estimation. The actual 
source used will have a length of 72 m and the centre point at 
[ ] [ ], , 7,2,1x y z = − , but it is assumed to have a length of 78 m, 
and centred at the origin. Using the slightly erroneous centre 
point and focal length will in effect complicate the estimation 
as higher degree terms are introduced. The main axis of the 
source is known and the dipole moment used is 

[ ] 250, 20,80 kAm= −M .  All of these values are summarized 
in Table I.  



 

 
 

A. Sampling criterion 
The sampling criterion applies to the measurement grid used 
on a given source. The measurement plane is here chosen at a 
depth of z=10 m, and the x- and y-coordinates of the grid are 
outlined in Table II. The letters L, M and S will denote the 
large, medium and small grid, respectively. 
 

 
Fig. 1 shows the simulated source on each grid. All plotted 
fields are smooth in the along ship direction, but only the large 
grid give a good impression of the athwart ship dependency of 
the field. The medium grid does indicate the athwart ship 
dependency, but the corresponding information from the small 
grid is minimal. Therefore, the small grid can generally not be 
recommended for solving the inverse problem. However, for 
our simulated source of pure dipole moments, it will turn out 
to be applicable.  
 

B. Supported harmonics 
The harmonics of highest degree and order that can be 
distinguished on each of the three sampling grids of Table II 
are found from Eqs. (4) and (5) and are outlined in Table III.  
 

  
The effect of using various combinations of basis functions 
and measurement grids is tested. The results of the estimations 
are summarized in Table IV where the estimated relative 
errors are found from the total magnetic field, i.e., |Btotest-
Btot|/Btot, averaged over all the measurements.  
 

 
 

 
 
A dense sampling grid used along with the supported set of 
basis functions and our suggested normalization and threshold 
of truncation, gives a very good accuracy of the 
representation, despite the non-optimal choice of centre point 
and focal length.  
 
When using the maximum supported basis sets, the on-grid 
error is of the same order of magnitude as the off-grid error, 
indicating no aliasing problems. Table IV also shows that the 
accuracy on describing both near field and far field increases 
with the size of grid and size of basis set. 

Fig. 1. The x-, y- and z-component of the simulated magnetic flux density in 
the top, centre and bottom window, respectively, simulated at a depth of 10 
m. Red samples correspond to the small grid (S), the black samples 
correspond to the medium grid (M), and the blue samples correspond to the 
large grid (L). 

TABLE I 
TRUE AND APPROXIMATE CENTRE POINT AND FOCAL LENGTH 

 True source Approximation used  
Centre point [m] [x, y, z] = [-7, 2, 1] [x, y, z] = [0, 0, 0] 
Focal length [m] f = 36 f = 39 
Dipole moment [ ] 2  50, 20,80 kAm= −M  

True simulated source and approximation used during the estimation in 
order to relate to an unknown measured ship 

TABLE II 
MEASUREMENT GRIDS 

Name y-coordinate x-coordinate. 
Large [-21:3:9] [-60:1.2:60] 
Medium [-18:9:9] [-60:1.2:60] 
Small [-9:18:9] [-60:9.6:60] 

The large, medium and small measurement grids, indicated by the start 
coordinate, the inter sample spacing and the stop coordinate 

TABLE III 
MAXIMUM SUPPORTED  SETS OF HARMONICS 

Name 
maxm  maxν  

Large 11 64 
Medium 4 64 
Small 2 7 

Basis functions supported by each of the three sampling grids of Table II. 
The maximum supported degree  for a given order  is found from the 

relation , following section III.B.  
maxn m

( )max maxn m mν= +

TABLE IV 
INVERSION BASED ON THE APPROXIMATE  CENTRE POINT AND FOCAL LENGTH 
Meas. grid  L M S 
Basis set L M S 
Dipole error 0.071 0.44 8.7 
On-grid error 0.0048 0.047 2.7 
Off-grid error 0.0047 0.048 2.8 

 
Meas. grid L L M S 
Basis set  M S L L 
Dipole error 0.69 12 0.050 9.3 
On-grid error 0.10 7.2 0.0055 0.0030 
Off-grid error 0.10 7.2 0.0055 17 

 All magnetic field errors are given in % and found from |Btotest-Btot|/Btot 
averaged over all the measurements. 



 

 
Furthermore, the accuracy of the estimation is not 
significantly changed by introducing more sample points 
alone (in the absence of noise) if the basis set used is smaller 
than the maximum supported basis set for the grid stated in 
Table III.  
 
By expanding the basis set out of the maximum supported set, 
the accuracy on the far field (expressed by the low degree 
coefficients) is increased. However, aliasing may be 
introduced (depending on the change of basis and truncation), 
leading to errors in the representation of the near field.  
 

C. Choice of centre point and focal length 
The conservation of the dipole moment has already been 
verified by inverting on a coordinate system with the focal 
length and the centre point different from those of the source. 
Here we will simply invert on the true centre point and focal 
length, and investigate the changed dependency on sampling 
grid and basis set. The results of the estimations are 
summarized in Table V. Comparing Table IV with Table V 
shows that the error is severely reduced or initially small for 
all the grids and basis sets.  
 

 
D. Normalization of the harmonics & truncation of the SVD  
In this section we demonstrate the importance of the 
normalization of the harmonics and the truncation of the 
singular value decomposition for estimation of the expansion 
coefficients.  
 
1) Truncation of the SVD  
The effect of truncating in the singular value decomposition is 
found by repeating the estimation of the expansion 
coefficients with the truncation threshold set to zero. The 
results of the estimations are presented in Table VI.   
 

 
Most of the combinations of grid and basis set are similar to 
those with truncation applied, presented in Table IV. For the 
large grid with the supported basis set, the accuracy decreased 
by one order, but is still high. For the medium grid with an 
unsupported large basis set, the new result is way off.  

TABLE VI 
INVERSION WITHOUT TRUNCATION  

Meas. grid L M S 
Basis set L M S 
Dipole error 0.98 0.46 8.7 
On grid error 0.13 0.035 2.7 
Off grid error 0.13 0.056 2.8 

 
Meas. grid L L M S 
Basis set M S L L 
Dipole error 0.67 12 92 (63) 9.3 
On grid error 0.099 7.2 21 (.002) 1e-12 
Off grid error 0.10 7.2 21 (0.64) 16 

All magnetic field errors are given in % and found from |Btotest-Btot|/Btot 
averaged over all the measurements. (Matlab standard truncation gives close 
to exactly the same results. The only significant differences are given in 
parentheses.)  

 
We conclude that truncating the SVD of the normalized basis 
functions sometimes improves the accuracy significantly, and 
therefore should always be applied.  
 
2) Normalization of the harmonics  TABLE V 

INVERSION BASED ON THE TRUE CENTRE POINT AND FOCAL LENGTH 
Meas. grid L M S 
Basis set L M S 
Dipole error 0.062 0.0044 0.00039 
On-grid error 0.0012 0.0018 0.000077 
Off-grid error 0.0012 0.0018 0.00010 

 
Meas. grid L L M S 
Basis set M S L L 
Dipole error 0.013 0.19 0.044 3.9 
On-grid error 0.0019 0.12 0.0014 0.0028 
Off-grid error 0.0019 0.11 0.0014 9.2 

 All magnetic field errors are given in % and found from |Btotest-Btot|/Btot 
averaged over all the measurements. 

The normalization of section V has been used for all the 
previous estimates of the expansion coefficients. In this 
section we investigate the importance of this normalization. 
The results of the estimation without normalization follow in 
Table VII.  
 

 
 

TABLE VII 
NON-NORMALIZED BASIS FUNCTIONS  

Meas. grid L M S 
Basis set L M S 
Dipole error 670 1.4 10 
On grid error 190 1.8 9.4 
Off grid error 190 1.8 9.9 

 
Meas. grid L L M S 
Basis set M S L L 
Dipole error 1.9 54 2e15 3e28 
On grid error 2.9 27 120 17 
Off grid error 2.9 27 120 140 

All magnetic field errors are given in % and found from |Btotest-Btot|/Btot 
averaged over all the measurements. 

Table VII shows that a severe error may be introduced when 
using non-normalized harmonics as basis set. The results 
based on the true centre point are of the same order, and are 
therefore not tabulated. The corresponding estimation without 
truncation shows similar results for all combinations involving 
the largest basis set, while the other combinations are identical 
to the normalized (non-truncated) ones of Table VI. Therefore 
normalization of the harmonics is very important when  
estimating a PSH model of high degree or order, which is 
required for accurate representation of the field.  



 

VI. MEASURED FIELD DATA OF A SHIP 
In the following the gained insight from the previous sections 
is applied on the recorded static magnetic field data from a 
merchant ship. The ship is 78 m long and was measured at a 
Royal Norwegian Navy calibrations site. The vertical 
component of the magnetic field was measured on 11 sensors 
at 10 m water depth. A reference sensor a few hundred meters 
away was used for background field noise cancellation. The 
measurements were down-sampled to give roughly 0.6 m 
resolution in the along ship direction in the range of [-60,+60] 
m, while athwart ship samples were between 21 m to port and 
9 m to starboard side. The signatures are plotted in Fig. 2 with 
origin at the estimated centre of the vessel. The field strength 
in Fig. 2 has been scaled by an arbitrary scalar value. 
 
We will now represent the field of this ship using a series 
expansion on prolate spheroidal harmonics by solving the 
inverse problem, following the approach outlined throughout 
this paper. From section III, we find that the grid supports 
discrimination between basis functions up to order 5m =  and 
degree expressed by .  64n m− =
 

 
Since the actual source of the ship is not known, it is 
important to asses the quality of the estimated model. We 
advocate that the methods suggested in section IV are highly 
applicable for such purposes and should be adopted as a 
standard for such validations.  
 
We know that the dipole moments should be independent of 
the centre point and focal length, and therefore perform the 
inversion for several choices of coordinate systems. (The 
centre points and focal lengths are selected around the best 
assessment for the ship, so that the shifted source can be 
represented by the supported harmonics.) Furthermore, we 
evaluate the error of the field on the grid, and interpolate the 
measured field to give a rough estimate of the error off the 
grid. Together this should give enough information to validate 
the process of inversion and the generated model.  
 
The estimation results for the various centre points and focal 
lengths are presented in Table VIII. We find that the error on 
the grid is very small, and also the error off the grid is small 
considering that the reference field was found by interpolation 

between the measurement points. The dipole moments are not 
very stable, and are estimated to M=[-12.5±8.3, -32.5±5.3, 
115±10] with one standard deviation indicated. The large 
variance indicates that the far field is not accurately 
represented by the estimated expansion coefficients.  
 
The shortcoming of the far field representation could either 
originate from inaccuracies on solving the inverse problem, or 
from insufficient information in the employed set of magnetic 
measurements.  
 
To summarize, the obtained model of this ship accurately 
represents the field near the measurement plane, but for larger 
distances the accuracy is gradually lost.  
 

 
 

TABLE VIII 
REPRESENTATIONS OF THE MEASURED MAGNETIC FIELD OF THE SHIP 

Centre point [m] Estimated field error  
f  x,y,z 

Estimated dipole 
moment M [kAm2] On-grid Off-grid 

39 0, 0, 0 -12.8, -33.4, 114 0.032 0.24 
35 0, 0, 0 -11.7, -34.2, 112 0.038 0.24 
43 0, 0, 0 -10.1, -32.6, 115 0.029 0.21 
39 4, 0, 0 -25.6, -32.6, 115 0.031 0.22 
39 -4, 0, 0 3.3, -34.7, 112 0.035 0.30 
39 0, 2, 0 -19.6, -39.7, 101 0.032 0.32 
39 0, -2, 0 -5.8, -20.1, 132 0.036 0.22 
39 0, 0, 2 -18.0, -30.4, 102 0.033 1.7 
39 0, 0, -2 -12.5, -34.6, 129 0.032 0.18 
Dipole moments estimated from measured vertical magnetic field from the 

merchant ship of length 78 m. The focal lengths are selected around the half 
the value of the ship length, and the centre point around an approximated 
geometric centre. The estimated field error is found from |Bzest-Bz|/|Bz|max 
·100%, averaged over all the measurements. The off-grid reference is found 
by cubic interpolation between the measurement points. 

 
Fig. 2. The eleven signatures recorded for the merchant vessel of length 78 
m. The field strength has been scaled by an arbitrary scalar value  

VII. CONCLUSION 
A number of improvements have been demonstrated for the 
inverse problem of prolate spheroidal harmonics series 
expansion. Limiting the set of harmonics to those supported 
by the measurement grid, normalizing and utilizing truncated 
singular value decomposition, contributes to a major 
combined effect. The resulting series expansion describes the 
near field very accurately and without aliasing. Given 
sufficient information from near field measurements, even the 
far field can be accurately represented. A set of quality 
measures is suggested and used to validate the application of 
the method on real measurements. The findings using real 
measurement are in accordance with those of simulated 
sources.  
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